Textured Image Segmentation : Returning Multiple

نویسندگان

  • Kevin M. Nickels
  • Seth Hutchinson
چکیده

Traditionally, the goal of image segmentation has been to produce a single partition of an image. This partition is compared to some \ground truth," or human approved partition, to evaluate the performance of the algorithm. This paper utilizes a framework for considering a range of possible partitions of the image to compute a probability distribution on the space of possible partitions of the image. This is an important distinction from the traditional model of segmentation, and has many implications in the integration of segmentation and recognition research. The probabilistic framework that enables us to return a conndence measure on each result also allows us to discard from consideration entire classes of results due to their low cumulative probability. The distributions thus returned may be passed to higher-level algorithms to better enable them to interpret the segmentation results. Several experimental results are presented using Markov random elds as texture models to generate distributions of segments and segmentations on textured images. Both simple, homogeneous images and natural scenes are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pixon-based Image Segmentation Method Considering Textural Characteristics of Image

Image segmentation is an essential and critical process in image processing and pattern recognition. In this paper we proposed a textured-based method to segment an input image into regions. In our method an entropy-based textured map of image is extracted, followed by an histogram equalization step to discriminate different regions. Then with the aim of eliminating unnecessary details and achi...

متن کامل

Textured image segmentation: returning multiple solutions

Traditionally, the goal of image segmentation has been to produce a single partition of an image. This partition is compared to some ‘ground truth’, or human approved partition, to evaluate the performance of the algorithm. This paper utilizes a framework for considering a range of possible partitions of the image to compute a probability distribution on the space of possible partitions of the ...

متن کامل

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

A Level-Set and Gabor-based Active Contour Algorithm for Segmenting Textured Images

This paper applies the authors’ previously proposed vector valued active contour without edges model to segment textured images. The model uses a level set implementation and can detect edges without the use of gradient information, making it natural for use in textured image segmentation. Multiple Gabor transforms of the original image are used to discriminate textures. We show numerical resul...

متن کامل

Neural Networks for Textured Image Processing

We review key conventional and neural network techniques for processing of textured images, and highlight the relationships among different methodologies and schemes. Texture, which provides useful information for segmentation of scenes, classification of surface materials and computation of shape, is exploited by sophisticated biological vision systems for image analysis. A brief overview of b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997